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Abstract—Human pose forecasting is an important problem
in computer vision with applications to human-robot interaction,
visual surveillance, and autonomous driving. Usually, forecasting
algorithms use 3D skeleton sequences and are trained to forecast
for a few milliseconds into the future. Long-range forecasting
is challenging due to the difficulty of estimating how long a
person continues an activity. To this end, our contributions
are threefold: (i) we propose a generative framework for poses
using variational autoencoders based on Deep Markov Models
(DMMs); (ii) we evaluate our pose forecasts using a pose-based
action classifier, which we argue better reflects the subjective
quality of pose forecasts than distance in coordinate space; (iii)
last, for evaluation of the new model, we introduce a 480,000-
frame video dataset called Ikea Furniture Assembly (Ikea FA),
which depicts humans repeatedly assembling and disassembling
furniture. We demonstrate promising results for our approach
on both Ikea FA and the existing NTU RGB+D dataset.

I. INTRODUCTION

Deep learning methods have enabled significant advances
in a variety of problems in computer vision, including 2D
human pose estimation. The impact of deep methods on
this problem has been so great that state-of-the-art accuracy
on existing pose estimation benchmarks is nearing human
performance [1], [2], [3]. This has enabled researchers to look
at more advanced scenarios than single-frame pose estimation.
This includes pose estimation on video sequences [4], [5], real-
time estimation of poses [6], multi-person pose estimation [7],
[8], and recently human pose forecasting [9], [10], which is
the central theme of this paper.

Forecasting of human poses is useful in a variety of scenar-
ios in computer vision and robotics, including but not limited
to human-robot interaction [11], action anticipation [12], [13],
visual surveillance, and computer graphics. For example, con-
sider a robot designed to help a surgeon manage their tools: it is
expected that the robot forecasts the position of the limbs of the
surgeon so that it can deliver the tools in time. Pose forecasting
is also useful for proactive decision-making in autonomous
driving systems and visual surveillance.

While the problem of human motion modelling and fore-
casting has been explored in the past [14], it was limited
to simple scenarios such as smoothly varying poses under
periodic motions [15]. As a result of the innovations in deep
methods and the availability of huge datasets [16], this problem
is beginning to be investigated with a renewed interest. For
example, Fragkiadaki et al. show how to learn the dynamics
of human motion using an encoder-decoder framework for
recurrent neural networks [9], while Jain et al. present an
alternative approach which is able to incorporate high-level
semantics of human dynamics into a recurrent network via
spatio-temporal graphs [10]. Although these newer approaches

Fig. 1. Five sampled Deep Markov Model (DMM) continuations for a
sequence from our proposed dataset, Ikea Furniture Assembly. The top left
frame shows the ground truth pose and image 7.5s after the beginning of the
forecast period. The remaining frames depict the corresponding pose from
each of the five sampled continuations.

have obtained promising results, all of them are purely deter-
ministic models which can only predict a single continuation
of an observed sequence, and are thus unable to account for the
stochasticity inherent in human motion. Both Fragkiadaki et al.
and Jain et al. observe that this stochasticity can lead simple
deterministic models to produce pose sequences which rapidly
converge to the mean, but they do not attempt to resolve this
issue at a fundamental level by explicitly modelling stochas-
ticity. A similar issue is present in the evaluation of forecasted
poses: most existing work compares forecasted poses to a
single ground truth sequence, when in reality there are often
many plausible continuations.

In this paper, we propose to address both of these problems.
First, to resolve the stochasticity problem, we make use of a
Deep Markov Model (DMM) [17], which allows us to sample
arbitrarily many plausible continuations for an observed pose
sequence. Second, on the evaluation side, we use an RNN
that takes a pose sequence and returns an action label. We
evaluate the quality of the forecasted pose in terms of the clas-
sification accuracy of the evaluation RNN against the ground
truth forecasted action. This allows us to gauge the intuitive
plausibility of the continued sequence without penalising the
model for choosing reasonable continuations which do not
coincide precisely with the true one.

We evaluate our proposed forecasting model on poses
generated over one existing dataset and one new one. The
existing dataset is NTU RGB+D [18], which includes over
5,000,000 video frames depicting a wide variety of actions, as
well as Kinect poses for all subjects in each frame. While
NTU RGB+D is challenging, sequences in NTU RGB+D
are typically very short, and lack the kind of regularity and
repetition of actions which pose prediction mechanisms ought
to be able to exploit. As such, we propose a novel human pose
forecasting dataset Ikea Furniture Assembly, that consists of
much longer sequences depicting 4–12 actions, each concerned
with assembling a small table. Figure 1 shows frames from one
such sequence. While this dataset provides a simple baseline,
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we believe the problem of pose forecasting is in its infancy, and
that our dataset thus provides a good platform for systematic
evaluation of the nuances of the problem. Our experiments on
these datasets reveal that our proposed method demonstrates
state-of-the-art accuracy.

II. BACKGROUND AND RELATED WORK

a) Pose estimation: Estimating 2D human pose from
monocular images is a well-studied problem. Approaches for
static images include pictorial structure models [19], [20],
random forests [21], and coordinate [22] or heatmap [9],
[1], [2] regression with CNNs. Some approaches are able to
exploit motion information by imposing high-level graphical
models [23] or back-warping joint heatmaps with flow [5];
however, state-of-the-art approaches like convolutional pose
machines [1] and stacked hourglass networks [2] still look at
only a single frame at a time, and do not model the temporal
evolution of poses.

b) Mocap modelling and synthesis: Modelling se-
quences of 3D motion capture vectors is both useful in its
own right—in animation, for instance [24]—and useful as
a benchmark for generic sequence learning techniques. Past
approaches to this problem include Gaussian processes [24],
switching linear dynamic systems [25] and Boltzmann ma-
chines [26].

It should be noted that our work differs from the majority of
existing literature on mocap synthesis in two respects. First, we
consider the problem of 2D pose estimation in image-relative
coordinates, as opposed to 3D pose estimation in scene-relative
coordinates. Second, our proposed benchmark does not allow
algorithms to make use of a ground-truth pose sequence at test
time, thereby forcing them to learn to exploit visual cues.

In the vision community, mocap modelling has sometimes
been used as a motivating application of temporally aware
neural network architectures. In addition to 2D pose estimation
and forecasting, Fragkiadaki et al. showcase their RNN-based
sequence learning framework by using it to extend sequences
of 3D motion capture data [9]. Similarly, Jain et al. apply
their general structural RNN framework to the same task,
and report aesthetically favourable results relative to Fragki-
adaki et al. [10]. Martinez et al. present a third approach
specifically tailored to pose forecasting, again reporting im-
provements over Fragkiadaki et al. and Jain et al., particularly
in the level of error on the first few frames of a sequence [27].

c) Pixel-wise prediction: Recent work in motion rep-
resentation has focused on anticipating future appearance,
motion or other attributes at the pixel level. Structured ran-
dom forests [28], feed-forward CNNs [29] and variational
autoencoders [30] have all been used to predict dense pixel
trajectories from single frames. Prediction of raw pixels—as
opposed to pixel trajectories—has been attempted using ordi-
nary feedforward networks, GANs [31], [32] and RNNs [33],
[34].

Even over short time horizons, pixel-wise prediction re-
mains a challenging task. State-of-the-art models are capable
of predicting up to a second ahead, albeit often with significant
blurring or other visual artefacts [32], [34]. We hope that, by
tackling a narrower problem, pose forecasting models will be

better able to learn long-range dynamics than models for pixel-
wise appearance prediction.

d) Sequence modelling with VAEs: Variational Autoen-
coders (VAEs) are a recent neural-network-based approach
to modeling complex, but potentially structured, probability
distributions. An ordinary regressor or autoencoder would be
trained to minimise the distance between its output and the
dataset X , whereas a variational autoencoder is trained to
maximise the variational lower bound log p(X) − KL(q(Z |
X) ‖ p(Z | X), where q(Z | X) is a (learned) variational
approximation to the intractable posterior p(Z | X) over
latent variables Z. Not only is this lower bound to the log
likelihood efficient to maximise [35], [36], but doing so confers
advantages over both ordinary regressors or autoencoders:

• VAEs are able to place a fixed prior p(Z) on latent
variables as part of the optimisation process. This enables
a single output x to be efficiently sampled by choosing
z ∼ p(z), then x ∼ p(x | z).
• In the presence of uncertainty, regressors trained to min-

imise `2 error will tend to produce the mean of all
plausible outputs, which may or may not be a plausible
output itself [37]. In contrast, VAEs are able model
multimodal output distributions, thereby yielding crisper
predictions.

The attractiveness of VAEs has led to a spate of new
approaches to stochastic sequence modeling, including
STORNs [38], VRNNs [39], SRNNs [40] and DMMs [17].
These approaches differ in terms of the information which
their respective generators condition on between time steps,
as well as the architectures of their (approximated) inference
networks. We have chosen to use DMMs in this paper because
of their strong performance in standard benchmark tasks and
their relative simplicity.

III. PROPOSED METHOD

In Figure 2, we show the complete pose forecasting system.
First, images are passed through a pose estimation system
to obtain a sequence of poses. The observed poses are then
passed to a sequence learning model to infer a latent repre-
sentation capturing the person’s anticipated motion after the
final frame. This latent representation can then be extended
out to an arbitrarily long sequence of poses using the sequence
learning model’s generative capabilities. Last, the sequence of
forecasted poses is evaluated by a pose-based action classifier.

A. Pose estimation

To turn an observed sequence of images into a sequence of
poses, we employ Wei et al.’s Convolutional Pose Machines
(CPMs) [1]. Specifically, a four-stage CPM is used to centre
detected person bounding boxes on their subjects, followed by
a six-stage model for pose estimation. To overcome temporal
instability in the estimations, the generated pose sequences are
smoothed using a weighted moving average.

B. Pose forecast model

The heart of our proposed system is a pose forecasting
network based on Krishnan et al.’s Deep Markov Models
(DMM) [17]. For the sake of understanding how the DMM
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Fig. 2. System components and their relations.

theory pertains to pose estimation, we can define the task of
pose forecasting formally: let p1:T denote a sequence of poses
p1, . . . , pT and z1:T denote a corresponding series of latent
variables z1, . . . , zT . Pose forecasting is the task of sampling
from the joint distribution p(p1:T , z1:T ), where p is assumed
to factorise according to

p(p1:T , z1:T ) =p(z1) p(p1 | z1)

×
T∏
t=2

p(pt | zt) p(zt | zt−1) .
(1)

The fourth panel of Figure 2 depicts this factorisation as a
Bayesian network. From this Bayesian network, it follows that
the posterior inference distribution p(z1:T | p1:T ) factorises to

p(z1:T | p1:T ) = p(z1 | p1:T )

T∏
t=2

p(zt | zt−1, pt:T ) . (2)

1) Variational approximation: For learning of these distri-
butions to be tractable, we must make several approximations.
First, we can use the following variational approximations in
place of the true generative distributions p(pt | zt), p(z1), and
p(zt | zt−1), respectively:

p(pt | zt; θ) = N (µE(zt; θ),ΣE(zt; θ)) (3)
p(z1; θ) = N (µT0

,ΣT0
) (4)

p(zt | zt−1; θ) = N (µT (zt−1; θ),ΣT (zt−1; θ)) (5)

The generative model parameters θ parametrise neural net-
works which are able to calculate the means (µT0

, µE , etc.)
and covariances (ΣT0

, ΣE , etc.) of the normal transition
and emission distributions (N (µT0

,ΣT0
), etc.). Similarly, we

can replace the (intractable) posterior inference distributions
p(z1 | p1:T ) and p(zt | zt−1, pt:T ) with two more learnt
variational approximations expressed in terms of inference
network parameters φ:1

q(z1 | p1:T ;φ) = N (µI0(p1:T ;φ),ΣI0(p1:T ;φ)) (6)
q(zt | zt−1, pt:T ;φ) = N (µI(zt−1, pt:T ;φ),ΣI(zt−1, pt:T ;φ))

(7)

1As there are many means and covariances produced by this model, it may
help to reader to know that the subscript E has been used for the mean
and covariance of the emission distribution, T for those of the transition
distribution (in the generative model), and I for those of inference distribution
(in the inference model). T0 and I0 refer to the initial latent distribution in
the generative model and inference model, respectively.

Parameters θ and φ can be optimised by gradient ascent
to maximise the variational lower bound −L(p1:T ; θ, φ) of
Kingma et al. [35]:

log p(p1:T ; θ) ≥ −L(p1:T ; θ, φ)

= Ez1:T∼qφ(z1:T |p1:T ;φ)[log p(p1:T | z1:T ; θ)]

−KL[q(z1:T | p1:T ;φ)‖p(z1:T ; θ)]
(8)

Where KL[f(·)‖g(·)] denotes the KL divergence between
densities f and g, and L(p1:T ; θ, φ) is shorthand for the
variational lower bound itself.

We can further factorise this variational lower bound using
the conditional dependencies identified above:

log p(p1:T | z1:T ; θ) =

T∑
t=1

log(p(pt | zt; θ)) (9)

KL[q(z1:T | p1:T ;φ)‖p(z1:T ; θ)]

= KL[q(z1 | p1:T ;φ)‖p(z1; θ)]

+ Ez1:T∼q(z1:T )|p1:T ;φ)
T∑
t=2

KL[q(zt | zt−1, pt:T ;φ)‖p(zt | zt−1; θ)]

(10)

Recall that all involved distributions are multivariate Gaus-
sians, and so each KL divergence has a closed form which
is amenable to optimisation with stochastic gradient descent.
Further, when training with SGD, it is generally sufficient to
approximate the expectation over the zts with a single sample
from q(z1:T | p1:T ), and it is possible to perform stochastic
backpropagation through this sampling operation using the
reparametrisation trick [35], [36].2

Taken together, these tricks make it possible to effi-
ciently train a neural network to optimise the DMM objective
L(P; θ, φ) over the full dataset P = {p(1)1:T , . . . , p

(N)
1:T }:

L(P; θ, φ) =

N∑
i=1

L(p
(i)
1:T ; θ, φ) (11)

2Readers who are completely unfamiliar with these techniques will likely
appreciate the context provided by Doersch’s tutorial-style treatment of
variational autoencoders [37].
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Fig. 3. Two possible continuations of a pose sequence, and the corresponding
`2 distance between the continuations and the ground truth.

2) Network architecture: To calculate the various µs and
Σs required by the variational approximation, we use a set of
networks based on Krishnan et al.’s ST-LR model [17]:

{µ,Σ}E(zt; θ): The mean and covariance of the emission
Gaussian are calculated by a simple multilayer perceptron.

{µ,Σ}T0
: The mean and covariance of the first latent vector

can be learnt directly, without need for an MLP.
{µ,Σ}T (zt; θ): The transition function is reminiscent of a

GRU: it uses zt−1 to compute hidden activations ht and
gating activations gt, then uses elementwise multiplication
with the gt to trade off the contributions of zt−1 and ht
to the new hidden state. See [17] for details.

{µ,Σ}I0(zt−1, pt:T ;φ) and {µ,Σ}I(p1:T ;φ): Both pairs of
means and covariances are calculated using the same
Bidirectional Recurrent Neural Network (BRNN), which
processes a pose sequence and then yields z1, z2, . . . , zT
in order. Note that the BRNN outputs zt after processing
actions and poses from both the future and the past: that
is, zt is calculated from all of p1:T , rather than just the
pt:T and zt−1 on which it is probabilistically dependent.
We retain the pt:T notation in the discussion above for
theoretical consistency.

C. Classifier-evaluator

Evaluation of forecasted poses is difficult. The most natural
approach is to adopt a geometric measure of error and use
that to compare different approaches. For instance, Fragkiadaki
et al. [9] uses a standard location-based measure of pose
estimation accuracy to report the performance of a 2D pose
forecasting system, while Jain et al. [10] evaluate a 3D pose
forecasting system using differences in joint angles. Unfor-
tunately, neither of these approaches is adequate to capture
human intuition about what constitutes a natural—or even
plausible—continuation of a pose sequence.

Method Accuracy
Ikea FA NTU RGB+D

Ground truth 91.0% 83.4%
Zero-velocity 81.8% 73.3%
DMM 75.8% 70.3%
ERD 75.2% 66.9%
LSTM-3LR 61.9% 53.5%
LSTM 54.5% 67.9%

Table I. Action classifier results for both forecasted and ground-truth
pose sequences. “Ground truth” shows the accuracy of the learnt classifier on
the true pose sequences, and thus serves as an ideal for predictors to meet.

As an example of this issue, take the two pose continuation
strategies in Figure 3: the magenta continuation shifts each
joint of each pose independently by a number of pixels
chosen from N (0, 202) (again independently in both x and
y dimensions). On the other hand, the yellow continuation is
simply the ground truth with N (0, 32) additional pixels of drift
accumulated at each time step. The latter clearly produces
a more coherent pose sequence, but is quickly exceeded in
“accuracy” by the former. This plainly illustrates the limita-
tions of the `2 distance metric for capturing the subjective
quality of pose sequence continuations in the presence of
drift. Further, although it is not illustrated in Figure 3, `2
distance can also penalise plausible, but incorrect predictions;
for instance, if a subject begins to move to the left during a
forecast was instead predicted to move to the right, it may still
be possible to produce an intuitively plausible continuation, but
the continuation would be penalised heavily by `2 distance.

Instead of measuring `2 distance, we score forecasted poses
by checking whether they are consistent with the action(s)
they represent. This is achieved by passing the poses through
a recurrent classifier-evaluator which is trained to recover
action labels from pose sequences. The recovered action labels
associated with the forecasted pose sequences can be compared
with the true labels, providing a robust measure of the realism
of the pose sequence. The classifier-evaluator is trained using
ground truth poses and action labels from the same dataset used
to train the corresponding pose forecast model(s). However, it
is not trained adversarially, as training it in tandem with any
one forecast model would compromise its ability to provide a
model-independent measure of pose realism.

IV. EXPERIMENTS

A. Datasets

a) Ikea Furniture Assembly: As alluded to earlier, there
are several challenging benchmark datasets for both action
recognition and pose estimation. However, we believe these
datasets are too demanding for a problem such as pose fore-
casting. This is because most of the existing video benchmarks
that include both poses and actions (such as Penn Actions [41],
the MPII Continuous Pose Dataset [42], or the JHMDB
dataset [43]) have either sequences that undergo significant
occlusions of body-parts, or include activities that are hard to
discriminate. As a result, it may be difficult to understand or
separate the challenge imposed by pose forecasting from that
imposed by other tasks.

Towards this end, we propose a new dataset called Ikea
Furniture Assembly (Ikea FA) that consists of basic actions
of individuals assembling a small piece of Ikea furniture. Our
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Fig. 4. Percentage Correct Keypoints (PCK) at different times and a fixed threshold on Ikea FA, for a range of methods.
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Fig. 5. PCK at different thresholds and a handful of fixed times on Ikea FA, again with a range of methods.

goal with this dataset is to predict the pose of a subject
after a few observed frames frames containing an assembling
action. There are 101 videos in the dataset, each about 2–
4 minutes long, and shot at 30 frames per second (although
we downsample to 10fps in our experiments to maximise the
duration for which it is computationally feasible to predict).
There are 14 actors in the videos, and we use sequences from
11 actors for training and validation while testing on the rest.
Half of the sequences show assembly on the floor, while the
other half show assembly on a workbench. As the frames
in Figure 9 indicate, floor sequences tend to provide more
challenging pose variations than table ones. The dataset is
available for download on the web.3

The original Ikea FA action labels includes four “attach
leg” actions (one for each leg), four “detach leg” actions, a
“pick leg” action, a “flip table” action, “spin in” and “spin out”
actions, and a null action for frames which were not labelled
or could not be labelled. Since several of these actions are
indistinguishable from pose alone, we merged all attach and
detach actions into a single super-action, discarded the null

3http://users.cecs.anu.edu.au/∼u5568237/ikea/

actions, and merged “spin in” with “spin out”, yielding only
four actions.

Ikea FA does not include ground truth poses for all frames,
so we used poses estimated by CPM for our experiments.
We have checked the CPM-labelled poses against a small
subset of hand-labelled poses using (strict) Percentage Correct
Parts (PCP), which measures the number of limb instances in
the dataset where both endpoints of the limb were estimated
accurately to within half the true length of the limb [44]. By
this criterion, upper arms were localised correctly 83.0% of
the time, and lower arms 76.6% of the time.

b) NTU RGB+D (2D): NTU RGB+D [18] is an ac-
tion recognition dataset of over 56,000 short videos, which
collectively include over 4 million frames. Each sequence was
recorded with a Kinect sensor, and consequently includes RGB
imagery, depth maps and 2D/3D skeletons. Each sequence is
also given a single action label from one of 60 classes, allowing
us to perform an action-classifier-based evaluation. Instead of
using the full 3D skeletons supplied with NTU RGB+D, we
limit ourselves to 2D skeletons for easier comparison with Ikea
Furniture Assembly.

http://users.cecs.anu.edu.au/~u5568237/ikea/


Because NTU RGB+D splits each action into a separate
video, most of its sequences are only a few seconds each.
Further, since the actions are largely unrelated, it is not possible
to produce meaningful sequences of actions by stitching the
videos together—one would only end up with a long sequence
of seemingly random actions that neither humans nor comput-
ers could be expected to anticipate. However, we still wish to
test the performance of our system on long videos, so we have
limited our NTU RGB+D evaluation to subsequences of 5s or
more. Unlike evaluation, training does not require a consistent
sequence length, so we still train on all sequences not used for
evaluation. For both training and evaluation, we downsample
to 15fps to minimise the computational overhead of prediction
on long sequences.

As with Ikea FA, we merge NTU RGB+D’s 60 actions
into only seven classes for action-based evaluation. These
classes constitute “super-actions” which are reasonably close
in appearance. They include a super-action for a subject
moving their hand to their head, another for moving their
whole body up or down on the spot, one for walking, one for
stretching their hands out in front of them, another for kicking,
a super-action for engaging in other fine manipulation with the
hands, and finally a catch-all class for actions which do not fit
into the aforementioned categories.

c) Pose parametrisation: We found that the choice
of representation for poses heavily influenced the subjective
plausibility of pose sequences. Giving the DMM and baselines
an absolute (x, y) coordinate for each joint resulted in wildly
implausible continuations and poor generalisation. All experi-
ments in this paper were instead carried out with a relative
parameterisation: the location of the head is encoded as a
series of frame-to-frame displacements over a sequence (i.e.
its velocity), while the locations of each other joint was given
relative to its parent. All sequences were mean-centred and
scaled to have poses of the same height before applying this
reparametrisation; after reparametrisation, each feature was
again re-scaled to have zero mean and unit variance over the
whole dataset.

B. DMM and baseline configurations

Each DMM experiment used a 50 dimensional latent space
for the DMM’s generative network, and 50 dimensional state
vectors for the inference network’s bidirectional recurrent
units.4 The architecture is otherwise identical to the ST-LR
architecture of [17].

We compare with four baselines predictors. The first base-
line is a zero-velocity model which merely assumes that all
future poses will be identical to the last observed pose. The
second is a neural network consisting of a single, unidirec-
tional, 128 dimensional LSTM followed by a Fully Connected
(FC) output layer. The third and fourth are Encoder-Recurrent-
Decoder (ERD) and three-layer LSTM networks (LSTM-3LR)
with the same architectures as those presented in [9]. Note that
the latter two models have significantly higher capacity than
the former two: the ERD has two 500 dimensional FC layers,
followed by two 1000 dimensional LSTMs, then another two

4At evaluation time, these bidirectional units are responsible for processing
only the observed sequence of poses, and not the subsequent ground truth to
be predicted.
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hidden 500 and 100 dimensional FC layers, before the FC
output layer. Likewise, the LSTM-3LR has a 500 dimensional
hidden FC layer, followed by three 1000 dimensional LSTMs,
before the FC output layer.

C. Evaluation protocols

Our first set of experiments focuses on displacements
between forecasted poses and the ground truth. Figure 4 and
Figure 5 depict the accuracy of predicted poses on Ikea FA,
while Figure 6 and Figure 7 depict corresponding statistics for
NTU RGB+D. Accuracies are reported as Percentage Correct
Keypoints (PCK); this shows, for a given joint or collection of
joints, the proportion of instances in which the predicted joint
was within a given distance threshold of the ground truth. On
Ikea FA, these distances are normalised to the length of the
diagonal of a tight bounding box around each pose, while on
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Fig. 8. Qualitative comparison of four models and the ground truth over a 7.5s forecast. Frames on the far left show the final observed poses, and subsequent
frames show forecasted poses.

Fig. 9. Typical DMM errors: on the left, the velocity-based parameterisation
has led to drift between the original, observed pose (far left) and the
corresponding pose recovered from the DMM (second from left). On the
right, the DMM has made an implausible transition between two independently
plausible poses in adjacent frames.

NTU RGB+D, the distances are instead normalised using the
average of displacements between a given hip (left or right)
and the opposite shoulder (right or left). Further, for the DMM,
we sampled five random continuations of each sequence and
reported expected PCK instead of ordinary PCK; this was not
necessary for the other baselines, which are deterministic.

Our second set of experiments focuses on the degree to
which forecasted pose sequences resemble the ground truth
sequence of actions for the forecast. To recover an action
sequence from a forecasted pose sequence, we apply a recur-
rent classifier network consisting of a pair of 50 dimensional
bidirectional GRUs, followed by a pair of 50 dimensional FC
hidden layers and an FC output layer. Weights for this network
are learnt from the training sets of each dataset. As with the
first set of experiments, we averaged the DMM’s performance
over five sampled continuations per pose sequence. Table I
shows the results of these experiments.

V. DISCUSSION

The joint-position-based evaluations on Ikea FA and NTU
RGB+D show that the DMM performs best on longer fore-
casting horizons of several seconds or more. Further, Table I

shows that we also improve on the three “smart” baselines
(ERD, LSTM, LSTM-3LR) in terms of the consistency of
our produced poses with the ground truth action sequence.
Qualitatively, we found that the ERD, LSTM and LSTM-3LR
baselines tend to start out with little error, but quickly either
converge to a mean pose or diverge to an implausible set of
poses. In contrast, the individual plausibility of poses produced
by the DMM tends not to decrease over time, and the DMM’s
output does not rapidly converge to an obvious fixed point.
Forecasts for each model on a single example sequence are
included in Figure 8.

One surprising—and troubling—outcome of our experi-
ments is the high performance of the zero velocity model. Not
only does it dominate all baselines in both types of experiment,
but it also beats our DMM model. This kind of performance
has been observed by other authors, as well: in introducing
the ERD, Fragkiadaki et al.reported that their model did not
consistently outperform a zero-velocity baseline on forecasting
of upper-body joints [9], and more recent work shows that this
is also true of other “state-of-the-art” models [27].

There are some factors specific to the DMM which may
be causing it to fall short of the zero-velocity baseline. In
large part, we expect that its inaccuracy is due to drift in the
predicted pose: as noted in Section III-C, small errors in the
predicted centre-of-mass of a person can rapidly build up to
destroy prediction accuracy, even when the motion of limbs
relative to one another is small. This problem is exacerbated
by our choice of a velocity-based parametrisation for head
location, which leads to very rapid build-up of error during fast
motions. Even when the DMM is able to observe ground truth
poses, before beginning to forecast, it still accumulates error as
the velocity-based input features do not provide the necessary



information for it to correct the drift which it accumulates. The
left side of Figure 9 illustrates the issue.

As Figure 1 demonstrates, the DMM is able to produce
a good diversity of continuations for a given pose sequence.
To some extent, though, this diversity comes at the cost
of temporal consistency: during evaluation, we found that
the DMM would sometimes flip between poses which were
independently plausible, but not temporally consistent, as
demonstrated on the right side of Figure 9. In contrast, the
deterministic baselines offer much smoother continuations,
but at the cost of poorer accuracy and a rapid drift toward
implausible poses. In principle, it ought to be possible to obtain
the best of both methods by adding a temporal smoothness
penalty to the DMM, although we have so far been unable to
improve results this way.

VI. CONCLUSION

We have proposed a novel application of Deep Markov
Models (DMMs) to human pose prediction, and shown that
they are better able to make long-range pose forecasts than
state-of-the-art models. Further, we have introduced a new
action recognition and pose forecasting dataset called Ikea
Furniture Assembly, and proposed a mechanism for action-
based evaluation of pose forecasts. Given the inherent difficulty
of making long-range motion forecasts from skeletons alone,
we believe that the most fertile ground for future research
lies in the use of visual context to enable more meaningful
predictions over horizons of several seconds and beyond.
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