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Abstract. The problem of human pose estimation in still images has
been well-studied in recent years, but making effective use of the tempo-
ral information inherent in videos is still an open problem. This paper
presents a new model which is forced to learn temporal relationships by
predicting poses in several frames at a time. The new approach caters to
the detection and classification capabilities of convolutional networks by
casting pose estimation as a problem of detecting the biposelets which
constitute a pair of poses in adjacent video frames. Relative to existing
single-frame-at-a-time methods, this new approach also makes it simpler
to combine pose predictions into a coherent sequence of poses across an
entire video. Experiments show that a biposelet approach outperforms
previous work on shoulder localisation, but that localisation of wrists
remains a challenge.

1 Introduction

Human pose estimation is the task of localising the joints of a person in an image
or throughout a video sequence. Effective pose estimation must accommodate
motion blur and self-occlusion, be invariant to subject clothing and scene clutter,
and exhibit an understanding of anatomic constraints on poses; these require-
ments make pose estimation a challenging problem even with state-of-the-art
computer vision techniques. In practice, 2D pose estimation is useful as a pre-
processing step for higher-level tasks, including 3D pose estimation [1,2] and
action recognition [3,4].

Intuitively, pose estimation in videos ought to be more effective than pose
estimation in static images. Even if a pose is blurred or occluded in one frame
of a video, it is often possible for humans to approximate it well by making
use of the context provided by surrounding frames. Algorithmically leveraging
this temporal redundancy is challenging. Simply feeding “temporal features” like
optical flow or multiple frames to a static pose estimator results in only modest
accuracy improvements [5]. On the other hand, extending a model to explicitly
consider joint motion can yield intractable inference problems which require
complex approximations [6]. Finding new ways to exploit temporal information
is thus an active area of research.

The main contribution of this paper is to propose and test a new approach
to human pose estimation in videos based on the concept of “biposelets”. As
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Fig. 1. An illustration of the pipeline. (a) depicts the biposelet-classifying CNN
(Section 3.2), (b) depicts the graphical model used for subpose localisation (Sec-
tion 3.3), and (c) depicts the stitching process (Section 4).

explained in Section 3.1, a biposelet describes a configuration of some subset of
a person’s joints in two adjacent video frames together; this allows biposelets to
express both the position and instantaneous motion of joints. Hence, casting pose
estimation as biposelet detection problem forces the proposed model to learn to
make use of the information present in two frames of video at the same time. As
a bonus, this pairwise detection approach gives rise to a relatively simple notion
of temporal consistency of poses across a video sequence, which is elucidated in
Section 4.

The complete pose estimation pipeline is divided into two stages, both de-
picted in Figure 1 (a–c): in the first stage (a–b), each pair of frames is processed
independently of the others to produce sets of candidate pose pairs. The first
stage makes use of a Convolutional Neural Network (CNN) to find regions of
each frame pair which visually resemble different biposelets (a), followed by a
graphical model which ensures that the relative positions of predicted biposelets
are anatomically reasonable (b). In the second “stitching” stage (c), a single pair
of poses is chosen from each set of candidate pose pairs; the resultant sequence
of pose pairs can then be turned into a sequence of single poses by averaging the
two poses predicted for each frame.

In Section 6, this strategy is evaluated on three established pose estimation
benchmarks. The evaluation shows a significant improvement in shoulder local-
isation accuracy compared to existing work.

2 Related work

Pose estimation methods for static images typically build on some sort of appear-
ance model which can be used to determine whether a specific joint is present in
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a small image patch. Linear classifiers applied to histogram-of-gradients features
are commonly used for this purpose [7,6], but have been eclipsed by increasingly
sophisticated convolutional network architectures [5,8,9,10,11]. The choice of a
CNN-based model in this work reflects this trend.

Appearance models can be complemented by global constraints on the rela-
tive positions of joints. For instance, Yang and Ramanan [7] define a graphical
model which encourages joint locations to fall in regions of the image with high
appearance scores while penalising atypical limb lengths and orientations. Sev-
eral approaches also use the appearance of body parts to infer “types” which
characterise those parts’ positions relative to their neighbours [7,9]. The ap-
proach presented here is similar, although it differs from past work in attempting
to simultaneously localise entire subsets of a person’s joints instead of a single
joint at a time.

In videos, pose estimation is frequently accomplished using a tracking-by-
detection approach: first, a set of poses is estimated independently for each
frame of the video. Next, the estimates for each frame are combined into a single
temporally coherent sequence [1,12,6,13]. This work follows a similar pattern,
but applies a detector to pairs of frames instead of a single frame at a time. As
mentioned previously, this makes it simple to stitch predictions into a complete
sequence. In contrast, past work using the frame-at-a-time method has had to
resort to more complex flow- and appearance-based heuristics to ensure temporal
consistency between predicted poses [6].

There have been several attempts to exploit motion information at the CNN
level rather than just through stitching heuristics: MoDeep [5] simply augmented
a single-frame heatmap regressor for joint positions with “motion features” de-
rived from neighbouring frames. For localisation of fast-moving joints, the au-
thors reported a boost in performance over an equivalent model without motion
features, but little boost in performance for slower-moving joints like the elbows.
Their result suggests that temporal relationships between joint position were not
being learnt effectively.

Other approaches to learning temporal relationships at the network level in-
clude “flowing convnets” [10], and the recurrent network approach of Fragkiadaki
et al. [14]. Flowing convnets use optical flow to warp joint position heatmaps
between frames, then pool the heatmaps at each frame to improve accuracy;
despite yielding state-of-the-art accuracy, flowing convnets only “understand”
temporal relationships insofar as they are able to learn a small set of pooling
weights for combining backwarped heatmaps. In contrast, Fragkiadaki et al. at-
tempt to learn temporal relationships directly using a recurrent neural network
architecture. Both approaches are benchmarked in Section 6.

3 Detecting pose pairs

3.1 Subposes and biposelets

The first stage of the pose estimation pipeline inspects two video frames at a
time and infers a set of poses which may be present in each. For the purposes
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Fig. 2. Biposelets learnt for left elbows in the MPII Cooking Activities dataset.
Cells within a row show different instances of the same biposelet. For brevity,
only the first frame associated with each biposelet is shown.

of this stage, a pose is decomposed into a fixed set of subposes, each of which
correspond to a subset of joints in the original pose. Subposes are chosen so that
each subpose shares exactly one joint with neighbouring subposes, and so that
each joint in the original pose is present in at least one subpose. For instance, a
pose containing shoulder, elbow and wrist joints could be decomposed into one
subpose containing the left wrist and left elbow, one containing the left elbow
and left shoulder, one containing both the left and right shoulders, etc.

Rather than representing the locations of each joint in each subpose directly,
the first stage discretises the space of configurations for joints within each sub-
pose into K biposelets. Biposelets are so named in analogy to the poselets of
Bourdev and Malik [15]. Unlike their namesakes, however, biposelets define po-
sitions of joints in two frames rather than just one. This allows biposelets to
represent both the relative positions of joints and their movement over time.
A representative set of biposelets learnt for the MPII Cooking Activities pose
estimation dataset [16] is shown in Figure 2.

3.2 Frame pair model

Formally, the frame pair model conceptualises a pose as a tree-structured graph
G = (S, E) consisting of a set of subposes S and a set of edges E ⊂ S × S.
Subposes are chosen according to the constraints listed in Section 3.1, and a
pair of subposes (s1, s2) will have an edge between them iff they have a joint in
common. Part (b) of Figure 1 illustrates this model: subposes are represented
by fully opaque image patches, and the edges between them by coloured lines.

The formal objective of the first stage of the pipeline is to take a pair of
frames (I1, I2) and output, for each subpose s, a subpose location ls ∈ R2 within
the frame pair and a biposelet type ts ∈ {1, . . . ,K}. Specifically, the first stage
must find some L =

[
l1 l2 · · · l|S|

]
and t =

[
t1 t2 · · · t|S|

]
which minimises the

cost

C(L, t | D12) = w0 +
∑
s∈S

φs(ls, ts;D12) +
∑

(s1,s2)∈E

ψs1s2(ls1 , ls2 , t1, t2) , (1)
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where w0 is a bias, each φs(·) is an appearance term, each ψs1,s2 is a pairwise
cost, and D12 is the concatenation of the frames I1 and I2.

Recall that each pair of neighbouring subposes has a single joint in common;
the aim of the pairwise terms is to ensure that neighbouring subposes are lo-
calised so that they predict similar locations for their shared joint. If j is a joint
in the subpose s, which is itself located at ls and assigned biposelet type t, then
let rs,j(ls, t) denote the mean location of joint j across both frames spanned by
the subpose. If joint j is shared between subposes s1 and s2, then the pairwise
cost can be written out in full as

ψs1s2(ls1 , ls2 , t1, t2) = 〈ws1s2 ,∆ (rs1,j(ls1 , t1)− rs2,j(ls2 , t2))〉 , (2)

where ∆(
[
δx δy

]
) =

[
δ2
x δx δ

2
y δy

]
is a deformation feature, and ws1s2 is a learnt

weight vector.
Each appearance term φs(ls, ts;D12) reflects the degree to which a small

region around the location ls “looks like” a subpose s with biposelet type ts.
Concretely,

φs(ls, ts;D12) = −ws log p(s, ts | D12(ls)) , (3)

where ws is a learnt weight and D12(ls) denotes a crop of the frame pair (I1, I2)
and the optical flow between them at location ls. p(s, t | D(l)) is the probability
that the image patch D(l) contains a subpose s with biposelet t, with the special
values (s, t) = (0, 0) denoting a background patch with no subpose.

p(s, t | D(l)) is produced by a two-stream convolutional neural network with
an architecture loosely following the 16 layer architecture of Simonyan et al. [17].
Specifically, Simonyan et al.’s original single-stream architecture has been split
in two, with one stream processing a stacked pair of RGB video frames and the
other processing the flow; the two streams are merged by concatenating them
after the third pooling layer. The output is a probability distribution over all
subposes s and biposelets t for each subpose. This is illustrated in part (a) of
Figure 1.

At test time, the network can be used as an efficient sliding window detec-
tor by converting the final dense layers to convolutions, which yields a fully
convolutional network [18]. Section 5 discusses training-time considerations.

3.3 Inference on frame pair model

The full cost (1) can be minimised efficiently by exploiting the subpose graph’s
tree structure. For each subpose s, define the minimal cost of the subtree rooted
at s as

M(ls, ts;D12) =
∑

s′:pa(s′)=s

min
ls′ ,ts′

(ψss′(ls, ls′ , ts, ts′) +M(ls′ , ts′ ;D12))

+ φs(ls, ts;D12) ,

(4)

where ls and ts are the location and biposelet type, respectively, of s, and
pa(s′) = s iff subpose s is the parent of subpose s′ in G.
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M can be calculated for each location and type of the root subpose by pro-
ceeding from the leaves of G upwards: for each leaf subpose sl, M(lsl , tsl ;D12)
is simply φsl(lsl , tsl ;D12). For a non-leaf subpose s, M(ls, ts;D12) can be com-
puted by first evaluating M(lsc , tsc ;D12) for each child sc of s, then applying
Felzenszwalb and Huttenlocher’s distance transform technique [19] to find the
lsc which minimises ψssc(ls, lsc , ts, tsc) for each tsc .

If there are N locations in the image and K possible biposelet types, then
applying this procedure to a non-leaf node will take O(NK2) time for each child
and each ls. Repeating the procedure for all subposes in the subpose graph G thus
takes O(|S|NK2) time. Intuitively, this means that introducing new subposes to
S or scaling up the number of pixels N is “cheap”, but increasing the number
of biposelet types drives up computational cost rapidly.

Having evaluated (4) for each possible root location lsR and root type tsR ,
finding the pose configuration which minimises (1) is a simple matter of looking
up

argminlsR ,tsR
M(lsR , tsR ;D12) (5)

and then backtracking to recover the locations and types of all other subposes.
This backtracking process can be repeated for several root locations and types
to produce a set of low-cost pose configurations for each frame pair; having
several such configurations is important during the sequence stitching stage of
the pipeline, as explained in Section 4.

After determining a location and biposelet type for each subpose, a location
can be recovered for each joint in the original pose model using the stored joint
offsets associated with each assigned biposelet. In cases where two subposes share
a joint, the final joint location is the average of the joint locations predicted by
the biposelets associated with those two subposes.

4 Sequence stitching

Evaluating the first stage of the pipeline on an entire video and thresholding
detections by score produces a small candidate set of pose pairs for each frame
pair. The second stage of the pipeline attempts to pick a single pose pair from
each candidate set of pose pairs, then combines poses from overlapping pairs to
obtain a single pose for each frame. Chosen pose pairs should meet two criteria:

1. Individual plausibility: low-cost poses, in the sense of the cost function (1)
for the frame-pair model, should be preferred over high cost ones.

2. Temporal consistency: when two selected pose pairs overlap on a frame, the
poses in that shared frame should be similar.

The pair selection criteria are easy to express mathematically. For a sequence
of F frames, let Pf denote the set of pose pairs detected between frame f and f+
1, where f ∈ {1, . . . , F −1}. Further, let (pf,1,pf,2) denote the specific pose pair
which the sequence stitcher chooses from set Pf , and cf be cost (1) associated
with the subpose locations and types defining that pose pair. The objective of the
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stitcher is to find a sequence of pose pairs (p1,1,p1,2), (p2,1,p2,2), . . . , (pf−1,1,pf−1,2)
from the sets P1,P2, . . . ,PF−1 which minimises

F−1∑
f=1

‖pf,2 − pf+1,1‖22 + λ

F−1∑
f=1

cf . (6)

The first term encourages temporal consistency, whilst the second favours low-
cost pose pairs over high-cost ones. λ is a constant which balances the two
considerations.

Once an appropriate sequence of pose pairs has been chosen, a final pose may
be produced for each frame f , for 1 < f < F , by averaging pf−1,2 and pf,1. In
the first and last frames, there will only be one selected pose to begin with, as
there is only one pose pair associated with each of those frames. This process is
illustrated in part (c) of Figure 1.

The stitching cost (6) can be efficiently minimised using a dynamic program-
ming approach analogous to the Viterbi algorithm. If there are |P| pose pairs in
each candidate set, then this minimisation will take O(F |P|2) time. Thus, it is
important to produce only a small set of the best pose pairs during inference on
the frame pair model. In practice, setting |P| between 100 and 1000 generally
gave an ample selection of poses without imposing a significant computational
burden.

5 Learning

The full pipeline contains a number of learnable parameters, including CNN
weights, biposelet centroids, and weights for the frame-pair cost in (1); this
section describes how each set of parameters is learnt.

CNN weights: The CNN is trained to predict the joint biposelet-subpose dis-
tribution for fixed-size crops of the training data using a cross-entropy classifi-
cation objective. Positive (subpose-containing) crops are taken around ground
truth subposes in the training set, with a small margin around the subpose to
ensure that all joints are in view. Negative (background) crops are initially taken
from regions of frame pairs in the training set not containing any people.

Preliminary experiments showed that using only pure background crops as
negatives left the CNN unable to discriminate between subposes in the centre of
the receptive field and subposes at the edges. That significantly harmed localisa-
tion accuracy, as the CNN would predict certain biposelets with high confidence
even when the true centre of the biposelet lay far from the centre of the receptive
field. To rectify this issue, the CNN training code also produces more challenging
negative crops which include off-centre subposes that do not correspond well (in
terms of L2 distance) to any of the learnt biposelets.

Past work has shown that two-stream CNNs are prone to overfitting [20]; in
this work, overfitting is addressed with aggressive use of dropout and dataset
augmentation, including random rotations, flips, and small translations. Random
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scaling was not found to improve network performance, and the use of large
random translations is precluded by the need to keep an entire subpose in view
for the sake of accurate biposelet prediction.

To improve convergence, the network is initialised with the weights of a
VGGNet trained for ILSVRC classification.1 The same weights are applied to
both the flow and RGB streams of the network, with filters for the RGB input
layer duplicated to accommodate the change from three image input channels
to six.

Biposelet centroids: Whenever creating a positive training sample for the CNN,
the training code also produces locations for each joint relative to the crop
used to make the sample. After all positive samples have been created, a set
of biposelets can be produced for each subpose by clustering the crop-relative
coordinates using K-means. The clustering process also yields a biposelet type
for each training sample, which can then be used as a target label for the CNN.
Clustering on the same samples used to train the CNN ensures that the learnt
biposelets reflect the range of augmentations applied to the data, and makes it
less likely that some biposelets will be underrepresented (or not represented at
all) in the CNN training set.

Weights for frame-pair model: The frame-pair cost (1) can be written as an
inner product between a feature vector comprised of deformation and appearance
terms and a weight vector composed of the bias w0, the deformation parameters
{ws1s2 : (s1, s2) ∈ E} and the appearance parameters {ws : s ∈ S}. Hence, it is
possible to learn the weights using a structural SVM formulation.

Concretely, the SVM is initialised with an intuitively reasonable set of weights,
which are used to perform pose estimation over the entire training set. This pro-
duces a set of positive feature vectors; negative feature vectors are produced
by applying the same procedure to images from the human-free portion of the
INRIA Person dataset [21]. The SVM can then be trained to label the positive
feature vectors with +1 and the negatives with −1.

Minimisation of the SVM objective is performed using an existing dual coor-
dinate descent solver [22]; one iteration of this detect-and-optimise process was
found to be sufficient to train the model. In contrast to the work of Chen et
al. [9], this work does not use location or type supervision, as neither were found
to improve the learnt weights.

Stitching parameters: In principle, the λ used to balance appearance and tem-
poral consistency during pose sequence stitching can be also be learnt using a
simple global optimisation method like randomised search. In practice, stitching
performance was largely invariant to choices of λ within several orders of mag-
nitude of the (presumed) global optimum. As a result, the values of λ used in
Section 6 were kept at a constant, intuitively reasonable value across all datasets.

1 https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3

https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3
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Upper arms Lower arms

PCP threshold 0.3 0.5 0.8 0.3 0.5 0.8

Chen & Yuille [9] 32.31% 75.91% 94.21% 48.30% 73.55% 85.19%

Cherian et al. [6] 27.66% 57.14% 78.04% 30.26% 50.32% 61.44%

Combined [6]
and [9]

31.63% 76.91% 95.02% 50.94% 76.29% 87.76%

Pfister et al.
SpatialNet [10]

51.89% 72.50% 83.11% 36.90% 54.36% 65.37%

Biposelets 59.46% 81.88% 90.17% 31.97% 52.25% 69.03%

Table 1. PCP at various thresholds on Poses in the Wild.

6 Experiments

To evaluate the effectiveness of the model, it was applied to three continuous
pose estimation datasets: Poses in the Wild, MPII Cooking Activities, and Hu-
man3.6M. The following parameters were used for all datasets:

1. Seven subposes were used by the frame pair model: one for each forearm
(one left and one right), one for each elbow, one for each upper arm, and
one root subpose containing both shoulders.

2. K = 100 biposelet types were learnt for each subpose.
3. |P| = 300 candidate pose pairs were extracted from each frame pair.
4. λ = 105 was used during stitching.

Localisation error is measured using variants on Percentage Correct Key-
points (PCK) and Percentage Correct Parts (PCP) [23]. Except where hip and
shoulder locations are available for normalisation, unnormalised PCK is used:
that is, a joint is considered to be correctly localised for the purpose of PCK
calculation if its predicted position in the image falls within a certain number of
pixels of the ground truth location. For PCP, a limb of length l is considered to
be correctly localised at a threshold t if both predicted endpoints fall within a
distance tl of their true locations; in the case of t = 0.5, this is simply ordinary
strict PCP.

Code for all experiments is available online.2 Note that the experiments were
performed on a machine with 128GB of main memory and 12GB of video memory
per GPU; a similarly capable machine will be required to train and evaluate the
convolutional networks used here.

6.1 Datasets

FLIC and PIW: Poses in the Wild (PIW) [6] is a video pose estimation dataset
with frames drawn from Hollywood movies. Scene clutter, camera motion, sub-

2 https://github.com/qxcv/joint-regressor

https://github.com/qxcv/joint-regressor


10 Sam Toyer

0 5 10 15 20 25 30

Threshold (px)

0

20

40

60

80

100
A
cc
u
ra
cy

(%
)

Shoulders

0 5 10 15 20 25 30

Threshold (px)

Elbows

0 5 10 15 20 25 30

Threshold (px)

Wrists

Cherian et al. [6]

Chen & Yuille [9]

Combined [6] and [9]

Pfister et al. (SpatialNet) [10]

Biposelets

Fig. 3. Unnormalised PCK on Poses in the Wild. The curves for Chen & Yuille
and the combined method occlude one another in the shoulder plot.

ject occlusion and rapid subject motion all make the dataset a challenging bench-
mark.

Unfortunately, at under a thousand frames, Poses in the Wild is not large
enough to both test and evaluate on. Thus, the model was trained on the Frames
Labelled in Cinema (FLIC) dataset [24] and then evaluated on PIW. As adja-
cent, labelled frames are required to train the frame-pair model, training was
performed on a subset of FLIC-full consisting of around 8000 reliably annotated
pairs. The remaining pairs had a mixture of incorrect annotations and excessive
occlusion which made them unsuitable for training the appearance model.

All baselines used for comparison were produced using publicly released eval-
uation code and models trained on FLIC. Note that the “combined” baseline
works by applying Chen & Yuille’s [9] detector to each frame of a video se-
quence, then combining the produced candidate pose sets for each frame into a
pose sequence using the recombination method of Cherian et al. [6]. It should
also be noted that the Pfister et al. baseline is for a non-temporally-aware model,
which they dub “SpatialNet”, rather than the flow-augmented model for which
Pfister et al. obtained the best results; code for the latter model was not publicly
available at the time that this paper was written.

PCK at image scale over all of Poses in the Wild is shown in Figure 3, while
PCP at various thresholds is shown in Table 1.

MPII Cooking Activities: MPII Cooking Activities [16] is a kitchen-themed ac-
tion recognition dataset which includes two pose estimation benchmarks. The
Cooking Activities data represents a near-ideal case for video pose estimation:
all videos are recorded from the same static camera in the same kitchen, with
minimal occlusion and only one subject per video sequence.

Training is performed on the “continuous pose estimation” dataset released
with MPII Cooking Activities, while the “pose challenge” dataset is used for
evaluation. It should be noted that the training set of the pose challenge is being
used for evaluation because the test set does not have continuous frames; despite
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Upper arms Lower arms

PCP threshold 0.3 0.5 0.8 0.3 0.5 0.8

Chen & Yuille [9] 79.44% 95.07% 98.39% 80.03% 96.00% 97.90%

Cherian et al. [6] 67.97% 80.91% 88.62% 55.71% 75.93% 83.45%

Combined [6]
and [9]

79.79% 95.07% 98.58% 81.54% 96.97% 99.07%

Biposelets 76.59% 87.44% 94.72% 69.21% 85.43% 94.28%

Table 2. PCP at various thresholds on MPII Cooking Activities.

the confusing nomenclature, the training set of the “pose challenge” (which is
used for evaluation) is not the same as the “continuous pose estimation” dataset
(which is used for training).

As with the comparison on PIW, all baselines used here were produced using
publicly released models trained for the FLIC dataset. Significant difficulty was
encountered in getting Pfister et al.’s publicly released SpatialNet model to pro-
duce competitive results on MPII Cooking Activities, so the SpatialNet baseline
was omitted from the Cooking Activities results.

PCK curves for MPII Cooking Activities are given in Figure 4, and PCP at
various thresholds is given in Table 2.

Human3.6M: Human3.6M [25,26] is a pose estimation and action recognition
dataset which includes full depth and 3D pose data recorded with a motion
capture system, although this evaluation uses only the RGB video and 2D pose
portions of the dataset. As a motion capture dataset, Human3.6M is recorded
in a controlled environment with a uniform background and no camera motion.
However, in other respects, it is significantly more challenging than PIW or MPII
Cooking Activities: not only do its actors exhibit a wider range of motion, but all

0 5 10 15 20 25 30

Threshold (px)

0

20

40

60

80

100

A
cc
u
ra
cy

(%
)

Shoulders

0 5 10 15 20 25 30

Threshold (px)

Elbows

0 5 10 15 20 25 30

Threshold (px)

Wrists

Cherian et al. [6]

Chen & Yuille [9]

Combined [6] and [9] Biposelets

Fig. 4. Unnormalised PCK on MPII Cooking Activities.



12 Sam Toyer

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Threshold

0

20

40

60

80

100
A
cc
u
ra
cy

(%
)

Elbows

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Threshold

Wrists

Fragkiadaki et al. [14] Biposelets

Fig. 5. PCK for subject five on the Human3.6M dataset. Thresholds are fractions
of the distance between the subject’s left hip and right shoulder.

motion is recorded from four cameras spaced evenly around the scene, meaning
that a significant portion of poses are non-frontal.

The primary motivation behind evaluating on Human3.6M is to compare to
the recent results reported by Fragkiadaki et al. [14] for a sophisticated recurrent
neural network architecture. The training and evaluation protocol used for the
biposelet model is similar to that employed by Fragkiadaki et al. with subject
five used for evaluation and all other subjects used for training. Due to time
constraints, it was not possible to evaluate the biposelet model on all frames
associated with subject five. Instead, the statistics given here are for a randomly
selected set of half the 120 available scenes, each of which has been further
trimmed to 5% of its original length. PCKs for both the biposelet model and
the recurrent network approach are given in Figure 5.

6.2 Discussion

The results for Cooking Activities and PIW show that the biposelet model im-
proves significantly on past work in the localisation of shoulders, and is compet-
itive on elbow localisation; this is reflected in both PCKs and in the difference
between upper arm and forearm PCPs. The use of subposes is likely responsible
for the high performance on shoulders: As mentioned in Section 1, identifying an
entire subpose can be easier than identifying a single joint—which is what all the
baseline methods do—because the CNN is able to make use of more surround-
ing context. This is particularly useful for shoulders, since the upper part of the
torso is almost always in view whenever both shoulders are, and the torso’s size
and consistent appearance make it easy to identify [27]. As is explained later in
this section, arms may not benefit as much from the use of subposes because of
their higher level of articulation.

Despite the model’s excellent overall performance in localising shoulders,
qualitative analysis revealed that shoulders were very poorly localised in a small
subset of the Cooking Activities frames. Frames (h) and (i) in Figure 6 illustrate
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Localisation successes Localisation failures

Poses in the Wild

(a) (b) (c) (d) (e)

MPII Cooking Activities

(f) (g) (h) (i) (j)

Human3.6M

(k) (l) (m) (n) (o)

Fig. 6. Characteristic successes (first two columns) and failures (last three
columns).

this problem. The fact that the same issue does not crop up in the more chal-
lenging PIW dataset suggests that the training protocol for Cooking Activities
may be flawed. A possible culprit is the lack of diversity in the subset of Cooking
Activities used for training—Cooking Activities uses only a handful of actors,
so the CNN may be overfitting to aspects of their appearance when learning to
classify shoulders. This problem may be ameliorated by training on FLIC—as
was done for the PIW evaluation—rather than on a subset of Cooking Activities.

A major weakness of the model across all datasets was in handling high levels
of joint articulation. Nowhere was this more evident than in the wrists—examples
(e), (j) and (m) in Figure 6 are representative of the many wrist localisation fail-
ures observed during evaluation. Such failures may be due to the limited number
of joint configurations which can be expressed using a small set of biposelets;
the baseline models do not suffer from this problem to the same degree because
they localise individual joints directly, rather than localising entire subposes and
then attempting to extract specific joint locations using a discrete set of subpose
configurations.

Biposelets must be able to express both joint location and motion, so it may
be that biposelet sets which are capable of expressing a wide range of motion
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are less capable of expressing fine differences in location. That would partially
explain why forearms are localised so poorly relative to upper arms: wrists and
elbows undergo a higher degree of motion than shoulders, so it is expected that
their associated biposelets should be able to express more extreme motion than
the biposelets learnt for shoulders. Experimenting with higher numbers of bipose-
lets and dividing the forearms into more subposes could address this deficiency
of the model.

Another possibility is that optical flow is not being used as effectively as it
could be. Wrists can move much faster than elbows or shoulders, so the magni-
tude of optical flow in an image patch should be a strong cue for the presence
of wrists. This is clearly illustrated by the “combined” baseline in Figure 3 and
Figure 4: combining Chen & Yuille’s approach with Cherian et al.’s (largely flow-
based) recombination heuristics yields the greatest performance improvement for
wrists, and no performance improvement for shoulders. Although the biposelet
model uses raw optical flow at the CNN input layer, Jain et al. [5] suggest that
use of raw flow can lead CNNs to overfit, and that supplying only the magnitude
of flow may be more effective.

Much like high level of joint articulation, occlusion was a significant challenge.
Frames (c) and (d) in Figure 6 show occlusion-related failures: in (c), the presence
of a flame occluding the subject’s left wrist has led their entire forearm to be
improperly localised, whilst in (d), two subjects occlude one another, and the
detector attempts to fit the same pose to both of them.

Poor performance on occlusions reflects a deficiency of the model: apart from
the pairwise deformation features in the cost function used for frame pair infer-
ence, the model does not have any way of reasoning about the position and type
of an occluded subpose based on the appearance of its visible neighbours. Im-
proving performance on subposes which are entirely occluded will likely require
the use introduction of something like Chen & Yuille’s image-dependent pairwise
relations [9], which enable reasoning about the position of a joint (or subpose,
in this case) based on image evidence at neighbouring joints (or subposes). In
contrast, deformation features depend only on the relative positions of subposes,
and not on the appearances of the subposes themselves.

Localisation performance on Human3.6M was uniformly poor relative to the
baseline. Visual inspection revealed that a majority of errors were due to confu-
sion between the left and right arms. For example, poses (n) and (o) in Figure 6
show a situation in which the estimator reversed its labelling of the left and right
arms within the space of two frames, even though the subject remained facing in
the same direction. Moreover, left–right confusion manifested itself in instances
like (m), where both the left and right arm were predicted to lie in the same
place.

Left–right confusion is a common problem in pose estimation; indeed, Fragki-
adaki et al. [14] note that their recurrent model outperforms a per-frame base-
line precisely because it is so effective at resolving left–right confusion. As future
work, it may be useful to augment the graphical model in Section 3 with a la-
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tent variable indicating whether a person is forwards-facing or backwards-facing,
much as Sapp & Taskar do to eliminate the left–right confusion [24].

7 Conclusion

Biposelets have proved to be effective in boosting pose estimation performance
on shoulders and, to a lesser extent, elbows. A biposelet-based approach is able
to make effective use of the distinctive visual context of those joints by localising
entire subposes instead of identifying a single joint at a time. Predicting poses in
pairs also leads to an elegant formulation for stitching pose predictions together
in a video setting, and forces the model to make use of the visual context present
in two video frames at a time. The price of these practical and theoretical im-
provements has been a drop in localisation accuracy for faster-moving joints;
this likely stems from the limited ability of biposelets to represent both the
motion and the position of those joints. Nevertheless, the already-competitive
performance of a biposelet approach and the opportunities for improvement enu-
merated in Section 6.2 make biposelets a promising area for future research.
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