
Video Pose Estimation with Convolutional Neural Networks and Recombination

Sam Toyer
The Australian National University

u5568237@anu.edu.au

Abstract

This paper presents a method for 2D human pose esti-
mation across a sequence of video frames. Our approach is
comprised of a Convolutional Neural Network (CNN) and
graphical model for independent generation of pose candi-
date sets in each frame, followed by a recombination step
which makes use of optical flow and limb deformation costs
to produce a single, consistent sequence of poses. Evalua-
tion on the Poses in the Wild data set validates the usefulness
of inter-frame pose recombination over single-frame pose
estimation alone, and shows that our method significantly
improves upon past work in localisation of wrists and elbows.

1. Introduction

The aim of human pose estimation is to take a static image
or sequence of video frames and output “skeletons” repre-
senting the locations of the joints1 of any humans in those
images, as depicted in Figure 1. Skeletons produced through
pose estimation are useful for many higher-level computer
vision tasks: for instance, knowing the locations of limbs
can be helpful for identifying what kind of clothing a person
is wearing [14, 15, 23], or for recognising actions [25]. Pose
estimation can even be used to classify inanimate objects
by observing how a person interacts with them [4]—for in-
stance, a chair could be identified by a person in a sitting
position above it. Improvement of existing pose estimation
techniques can yield flow-on improvement in all of these
applications.

Pose estimation is complicated by the wide range of plau-
sible poses, the varied appearance of human bodies and
clothing, occlusion of joints by objects or by other limbs,
background clutter which resembles joints, and so on. Tak-
ing advantage of the motion information present in video

1In the jargon of pose estimation, the term “joint” can be used to refer
to any identifiable point on a person’s body, including the elbows, wrists,
head, and so on. Similarly, “limb” can be used to describe any connection
made between joints for the purpose of constraining or visualising poses,
and need not refer to an anatomical limb like an arm or leg.

1 2 3

Figure 1. A video sequence annotated by our algorithm. Only
shoulders, wrists and elbows are shown in this example.

sequences introduces another layer of complexity to this
already challenging problem.

We deal with this complexity by dividing our video pose
estimation pipeline into two phases. Initially, a pose esti-
mation procedure is applied independently to each frame
in the video sequence. This procedure implicitly scores
all possible poses in each video frame and returns a selec-
tion of the highest-scoring poses, which is pruned through
non-maximum suppression to ensure that the returned set
contains a diverse selection of poses. After a candidate pose
set has been generated for each frame, the joints in each
candidate pose are split up, and the complete set of joints is
used to produce a single best position for each joint in each
frame of the sequence.

Our candidate set generation procedure, described in Sec-
tion 3, follows the approach of Chen and Yuille [2], which
combines features from a deep CNN with a graphical model.
The CNN yields features which are much more informa-
tive than the Histogram-of-Gradients (HoG) features used
in previous work [3, 7, 17, 24], whilst the graphical model
encourages joints to take on anatomically reasonable relative
positions.

As explained in Section 4, incorporating temporal edges
into graphical model-based pose estimation methods can re-
sult in an intractable inference problem. Independently gen-
erating a small set of candidate poses in each frame and using
temporal edges to select the best candidate partially allevi-
ates this problem. We employ a recombination method—as
described by Cherian et al. [3]—to improve efficiency even
further by allowing joints to be mixed-and-matched from
different poses in each candidate set, thereby increasing the

effective size of the candidate sets under consideration whilst
maintaining tractability.

In Section 5.1, we find that, by combining these two
approaches, we obtain a significant in accuracy over Cherian
et al.’s method, and a slight increase in accuracy over Chen
and Yuille’s method when estimating the positions of wrists
and elbows. Wrists and elbows are the most difficult joints
to detect due to their size and rapid motion, which makes
our result significant, especially given that, until recently, the
aforementioned approaches constituted the state-of-the-art
in video and static image pose estimation, respectively.

2. Related work
Early attempts at human pose estimation often made use

of pictorial structure models [5, 8], which exploit the fact
that poses can be decomposed into joints which are likely
to stay within certain distances of one another. Yang and
Ramanan [24] extended this approach by introducing the
notion of joint types to capture the different appearances
which a joint can have depending on its orientation or other
attributes. By treating the types of each joint as latent vari-
ables in a graphical model, and making deformation terms
take into account the joint types on either end of a limb, Yang
and Ramanan were able to obtain a significant increase in
accuracy over earlier models. In this paper, we use a similar
approach for generating pose candidate sets within frames.

Another common approach is to regress the (x, y) coor-
dinates of joints directly from an image [20, 22], although
this can lead to implausible poses being generated unless
some constraints on the relative positions of limbs or on the
overall pose are introduced. Using graphical models, as we
have, can increase accuracy by eliminating pose candidates
in which predicted joint positions are individually likely, but
collectively implausible due to anatomical constraints.

The benefits of CNNs over traditional hand-engineered
image features—as elucidated by LeCun and Bengio [13]—
have recently led to major advances in image classification,
object detection, and other fundamental tasks in computer
vision [12, 18]. This has prompted increased investigation of
CNNs for pose estimation.

Toshev and Szegedy [22] produced an early result in
this area by proposing a cascade of CNN-based regressors,
where the first regressor outputs an approximate location
for each joint, and subsequent regressors are used to refine
those approximations. Alternative approaches [9, 10, 16]
instead map images to heatmaps for each joint, which has
the advantage of being a less nonlinear mapping than that
from images to joint coordinates. The heatmap approach
also makes it straightforward to incorporate graphical mod-
els later in the pose estimation pipeline, since the heatmap
values at different locations can be used as graphical model
potentials [2, 21], as explained further in Section 3.1.

The motion information available in videos has previ-

ously been exploited using tracking [1, 11] or by extending
graphical models for single-frame prediction with temporal
links between joints in different frames [3, 7, 19]. Motion
information has also been incorporated into CNN-based de-
tectors by introducing motion features like optical flow at the
input layers, which can sometimes increase accuracy over
single-frame pose estimation [10]. As alluded to in Section 1,
incorporating temporal links into graphical models can make
inference intractable, and so past approaches in this area
have used approximations. We avoid this problem by using
recombination, as described in Section 4.1.

3. Single-frame candidate set generation
Our method for generating pose candidate sets largely

follows that of Chen and Yuille [2], although we will use
this section to describe the relevant parts in full.

Pose skeletons are represented by a graph G = (V, E)
consisting of a set of joints V and a set of limbs E ⊆ V × V .
A complete pose p = (l, t) is represented by a location lu
within an image I for each joint u ∈ V , and discrete “types”
tuv ∈ {1, . . . , Tuv} and tvu ∈ {1, . . . , Tvu} for each limb
(u, v) ∈ E .

Limb types are used to express the orientation and length
of limbs. For example, one type might correspond to long
forearms running from left to right. During inference, these
types are introduced as latent variables, and type-dependent
limb deformation costs are added to encourage joints to take
anatomically reasonable relative positions. Further evidence
for the type of a limb can be gleaned by inspecting small
patches of an image around the endpoints of that limb. For
instance, an image of a shoulder might give clues as to the
direction in which the attached upper arm is pointing; this is
discussed at greater length in Section 3.1.

Given an image and a complete pose (l, t) consisting of
a set of joint locations l and a set of limb types t, the full
score C(l, t) of the pose can be decomposed into a sum of
unary costs and pairwise costs, written as

C(l, t) = w0 +
∑
u∈V

φu(lu) +
∑

(u,v)∈E

ψuv(lu, lv, tuv, tvu),

(1)

where φu and ψuv are described in the next section, and w0

is a bias term.

3.1. Image-dependent terms

The pairwise cost ψuv(lu, lv, tuv, tvu) can be decom-
posed into the sum of type-dependent deformation costs
and Image Dependent Pairwise Relation (IDPR) terms, as
expressed by

ψuv(lu, lv, tuv, tvu) = wT
uvtuv

d(lv − lu − ruvtuv
)

+wT
vutvu

d(lu − lv − rvutvu)

+wuvIuv(lu, tuv) + wvuIvu(lv, tvu),
(2)

where d(v) =
[
v2x v2y vx vy

]T
is a deformation feature,

ruvtuv
is the average displacement of a limb of type tuv , and

I represents an IDPR term, explained below.
Given a K-joint skeleton, we can define p(j = u | I(l))

to be the probability that the joint contained in the patch
I(l) of the image I around l is the joint represented by u ∈
{1, . . . ,K}∪{0} = V∪{0}, with the special value of u = 0
indicating that no joint is present. If we know that the patch
I(l) contains a joint u, and (u, v) ∈ E is a limb, then we
can define p(tuv = t | j = u, I(l)) to be the probability that
the limb between (u, v) has type tuv ∈ {1, . . . , Tuv}. Using
this notation, we can define the IDPR term I as

Iuv(lu, t) = log p(tuv = t | j = u, I(lu)). (3)

The inclusion of both Iuv and Ivu ensures that the visual
cues given by the joints at either end of a limb can be used
to infer the type of that limb.

The appearance term φu is defined similarly, and gives
the log probability that a small, fixed-size patch of the image
centered at lu contains the joint u:

φu(lu) = wu log p(j = u | I(lu)). (4)

3.2. Computing unaries and IDPR terms

To compute the unaries defined by (4) and the IDPR
terms defined by (3), we train a CNN to output a distribution
over joints and the types of neighbouring limbs for each
patch of a given image I, from which we may obtain the
appearance and IDPR terms by marginalisation. If we let
tu ∈

∏
(u,v)∈E{1, . . . , Tuv} denote a combination of types

for all limbs adjacent to a joint u, then we can write this
distribution as

p(j = u, tu = t | I(l)) (5)

for any location l in I and any joint u ∈ {1, . . . ,K}.
Our CNN architecture closely follows that of AlexNet

[12], and is identical to that of [2]. To minimise wasted
computation, we convert the final fully connected layers of
the network to 1× 4096 convolutions after the network has
been trained. This allows us to evaluate (5) over a set of
uniformly spaced patches of a full-resolution image in a
single pass, rather than having to pass patches through the
network one at a time [18].

3.3. Producing the candidate set

Having evaluated appearance and IDPR terms for all
joints and all locations in the image, we can now produce a
set of high-scoring pose candidates for use in the recombina-
tion procedure (Section 4). Recall that poses are modelled
as trees rooted at the head; the score of any subtree of the

full pose tree rooted at joint u in location lu is

Su(lu) = φu(lu)

+
∑

pa(v)=u

max
lv,tuv,tvu

[ψuv(lu, lv, tuv, tvu) + S(lv)] , (6)

where pa(v) = u iff u is the parent of v in the full pose tree.
At the leaves, this formula becomes Sv(lv) = φv(lv),

which is trivial to compute for all locations in the image.
Otherwise, given child scores Sv1(lv1), . . . , SvC (lvC) for
the children {v : pa(v) = u} of some non-leaf joint u, it
is possible to evaluate Su(lu) for all locations lu in linear
time using distance transforms [6]. If we have Tuv = T for
each (u, v) ∈ E , then we must also perform maximisation
over T 2 limb label combinations at each joint. Since this
maximisation must be performed at a total of K joints, the
overall time complexity of calculating the score Sh(lh, I) of
the root component for all N values of lh is O(T 2NK).

Given the maximum scores Sh(lh) for a pose rooted at
each possible head location lh, we can produce a set of M
pose candidates by choosing the M highest-scoring head
positions and backtracking to find the remainder of the pose.
However, since recombination benefits from a diverse set of
poses, we apply non-maximum suppression to ensure that
our returned candidate pool contains only poses for which
the pairwise intersection-over-union for detected wrists is no
greater than some threshold.

3.4. Learning

Training for the single-frame candidate generation model
begins with derivation of the mean limb displacement ruvtuv

for each limb (u, v) ∈ E and each type tuv ∈ {1, . . . , T} for
that limb, where we have assumed for simplicity that each
limb has the same number of types T . For a limb (u, v), this
is achieved by calculating the displacement lv−lu associated
with each pose in the training set, then running K-means to
find T centroids for the calculated displacements.

Having assigned a type to each limb in the training set, an
image crop is made around each joint and labelled with the
joint type and the types of all neighbouring limbs. We also
include a set of patches not containing any people, which are
labelled with a special negative label. The produced set of
patches and labels is used to find parameters for the neural
network described in Section 3.2 using stochastic gradient
descent.

Finally, we can learn the bias w0 and the weight sets
{wuvtuv

}, {wuv}, and {wu} for the pose cost (1). The cost
associated with the limb locations, image, and limb types
detected from a training sample can be represented as an
inner product between a weight vector and a feature vector
composed of all appearance, IDPR and deformation terms.
If we classify all accurate predicted pose configurations as
“positive” examples, and all other configurations—including

poses predicted for images in which no humans are present—
as “negative” examples, then this can be viewed as the prob-
lem of finding weights for a structural SVM, which we do
using the dual coordinate descent approach described in [24].

4. Pose estimation in videos
We have already seen in Section 3 how we can use a

graphical model to do pose estimation within a single frame.
Pose estimation in videos is similar to pose estimation in
static images, except that we wish to enforce some sort of
temporal consistency between poses. The obvious approach
to this problem is to apply our existing graphical model to
each frame, but to also add some temporal consistency term
τ(pt, pt+1) =

∑
u∈V τu(lu,t, lu,t+1), where pt is the pose

predicted at time t, and lu,t denotes the predicted location of
joint u at time t. If we had F frames in total, then the full
cost would be

C(pF) +

F−1∑
t=1

[C(pt) + τ(pt, pt+1)] , (7)

where we have abbreviated C(lt, tt) as C(pt).
(7) corresponds to a complex, highly loopy graph, which

makes it infeasible to find the p1, . . . , pF which minimises
(7) for any nontrivial choice of τ . One way to reduce this
computational burden is to restrict the set of poses which we
consider to some limited set Pt in each frame; if we have
exactly |P| candidate poses in each frame, then dynamic
programming would allow us to minimise (7) in O(|P|2F)
time. |P|2 can still be colossal when a large number of poses
are considered in each frame, which restricts the applicability
of this technique to situations in which |P| is small.

4.1. Recombination

Cherian et al. [3] avoid the penalty incurred by large pose
candidate sets by taking a small, diverse set of |P| candi-
date poses and then considering all possible combinations
of joints from each of those poses. Given |P| poses and
K joints, this results in an effective candidate set of |P|K
poses in each frame, and ensures that the best joints in the
pose candidate set, rather than just the best pose candidates
themselves, are considered.

Now that we know we can efficiently perform inference
on a large effective pose set, we can introduce temporal
smoothing links between each joint u ∈ V in the pose at
time t and its counterpart at time t+ 1 using a cost

τu(lu,t, lu,t+1) = λτ‖lu,t+1 − lu,t − ft(lu,t)‖2, (8)

where ft(lu,t) is the optical flow at location lu,t between
frame t and frame t+ 1.

Additionally, to encourage the connected limbs chosen to
make up each frame’s final, recombined pose to be close to

one another, we introduce a recombination cost ρv for each
pair of limbs (u, v), (v, w) ∈ E (where u 6= w) which share
a common joint v:

ρv(lv, l
′
v) = λρ‖lv − l′v‖2. (9)

The complete cost which the recombination process must
minimise is therefore given in (10); we have used VS = {v :
∃u 6= w : (u, v) ∈ E ∧ (v, w) ∈ E} to denote the set of
joints which are shared between two or more limbs, whilst
lv denotes the location of joint v in a recombined pose and
l′v denotes a location of joint a v which was discarded during
recombination, but for which the location of some joint w
connected to v was used.

F−1∑
t=1

[
C(pt) +

∑
v∈VS

ρv(lv,t, l
′
v,t) +

∑
u∈V

τu(lu,t, lu,t+1)

]
+ C(pF) +

∑
v∈VS

ρv(lv,F , l
′
v,F)

(10)

In order to make the minimisation of the full temporal cost
(10) tractable, limbs are recombined starting at the head—
which is typically the easiest joint to detect—then moving
on to the neck, the shoulders, and so on until the full pose
has been estimated in all frames.

Specifically, the algorithm starts by choosing a head po-
sition lh,t at each time t = 1, . . . , F such that the chosen
sequence of heads minimises the following cost, which cor-
responds to the parts of the full cost (7) that involve the head
or any temporal links between heads in adjacent frames:

φh(lh,F) +

F−1∑
t=1

[φh(lh,t) + τh(lh,t, lh,t+1)] . (11)

If we have |P| candidate poses in each frame, each of
which corresponds to a single head position candidate, then
we can use dynamic programming to perform this minimisa-
tion in O(|P|2F) time.

Position sequences for any subsequent joint u can be
found in much the same way, except that we must also in-
clude pairwise costs from the single-frame cost C, as well
as recombination costs relative to the (previously localised)
parent joint, yielding a full cost of

F−1∑
t=1

[
Cuv(lu,t, lv,t, t) + ρu(lu,t, l

′
u,t) + τu(lu,t, lu,t+1)

]
+ Cuv(lu,F , lv,F , t) + ρu(lu,F , l

′
u,F),

(12)

where v = pa(u) is the parent of u and Cuv(lu, lv, t) are
the terms of the single-frame cost (1) which either involve
only u or involve both u and v.

As with the head, finding the appropriate sequence of joint
locations for each remaining joint can be done in O(|P|2F)
time with dynamic programming, meaning that the total
runtime of the minimisation procedure is O(K|P|2F) for a
K-joint skeleton.

4.2. Approximations and heuristics

In practice, the unary terms in the head sequence cost
(11) and the cost (12) for subsequent joints can be approx-
imated by the full, single-frame inference score C(l, t) for
the specific candidate pose being considered. This not only
makes implementation easier, but improves performance due
to the fact that the single-frame inference scores are already
computed during candidate set generation.

In addition to the costs listed above, we have used the
“practical extensions” of [3], which include additional key-
points along limbs to constrain motion further, an additional
term for wrists which encourages them to occupy regions
of high motion, and a regularisation term which acts to con-
strain the absolute difference between joint positions across
frames.

5. Experiments
To evaluate the performance of our model, we tested it on

the Poses in the Wild [3] data set, which consists of a series
of 16–30 frame sequences extracted from movies. Many
sequences in this data set include a large degree of camera
motion, rapidly moving subjects, cluttered backgrounds or
occlusion of joints.

The single-frame pose estimation model was trained on
the Frames Labelled in Cinema (FLIC) data set [17], with
negatives drawn from the INRIA person data set.2 The data
set was augmented by rotating images through a 70◦ range
in 5◦ increments, as done in [2].

For recombination, we chose a set of hand-tuned parame-
ters which differed for each pair of joints, depending on the
extent of motion of the joints.3At test time, 100 candidate
poses were used in each frame and NMS was performed at
a threshold of 95% of the intersection-over-union on each
wrist.

We found it advantageous to perform candidate set gener-
ation independently at several scales. The highest-scoring
poses over all scales were passed to the recombination stage
to produce a final pose sequence.

5.1. Results

The accuracy of our algorithm on Poses in the Wild is
depicted in Figure 3. For comparison, we have included the
results of our algorithm in its previously described evaluation

2http://pascal.inrialpes.fr/data/human/
3All parameters are available online, along with the rest of the code for

these experiments: https://github.com/qxcv/comp2560

Stage Flow CNN Candidate set gen. Recomb.
Time 337s 1713s 159s 11s

Table 1. Run time of different stages of the pipeline when applied to
all 30 frames of sequence 15 of Poses in the Wild. The experiment
was performed using two Intel Xeon E5-2620 processors and an
NVIDIA K80 GPU.

configuration and the results of our algorithm when only
one candidate pose is generated for each frame, in which
case it is equivalent to Chen and Yuille’s method [2]. We
have also included the results of Cherian et al. [3] on the
same sequence. Timings for the different stages of the pose
estimation pipeline during testing on a single sequence of
Poses in the Wild are given in Table 1.

Note that results for Yang and Ramanan’s [24] widely
used pose estimator have been provided in Figure 3 solely to
enable comparison with other work which has been evaluated
against their system; whilst their system once represented
the state of the art, and was widely benchmarked against as
a result, it has since been surpassed in accuracy.

Owing to the lack of released evaluation code, the recent
results of Pfister et al. [16] are not listed in Figure 3. How-
ever, Pfister et al. also reported improvements on the state
of the art in video pose estimation, so comparison with the
results given in their paper—especially their evaluation on
Poses in the Wild—may be of benefit to some readers.

6. Discussion and future work
Figure 3 shows that our algorithm significantly improves

on the results of Cherian et al. [3] for elbows and wrists,
which are typically the most difficult joints to detect. Further,
it demonstrates that recombination yields an appreciable
performance increase over independent pose estimation in
each frame, especially for wrists. The results also show
a slight improvement over Chen and Yuille’s method [2]
in some cases, and compare favourably with the reported
results of Pfister et al. [16].

Chen and Yuille’s pose estimation method performs im-
pressively well on its own given that it does not make use of
temporal information. This can be ascribed to its use of pow-
erful CNN-based image features rather than the HoG features
of previous pose estimation systems. This serves to explain
our performance gains relative to Cherian et al.’s method,
since the candidate set generation stage of our pipeline is an
extension of Chen and Yuille’s model.

Counterintuitively, the approach of Cherian et al. outper-
forms ours on shoulders at low thresholds. This could be
because of the size of joint–type distribution (5) learnt by the
CNN; in the graphical model used to generate pose candidate
sets, the shoulder is attached to the upper arm, upper torso
and base of the neck, so if 13 types were learnt for each limb,
then there would be 133 = 2197 different combinations of

http://pascal.inrialpes.fr/data/human/
https://github.com/qxcv/comp2560

(a) (b) (c) (d) (e) (f)

Figure 2. Common types of errors encountered during testing on the Poses in the Wild data set.

0 5 10 15 20 25 30 35 40

Threshold (px)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Shoulder

0 5 10 15 20 25 30 35 40

Threshold (px)

Elbow

0 5 10 15 20 25 30 35 40

Threshold (px)

Wrist

Our method
Chen and
Yuille
Cherian et al.
Yang and
Ramanan

Figure 3. Accuracy on the Poses in the Wild data set for different joints. A joint is considered to be correctly detected in a single frame if the
distance between its predicted position and its true position is less than some threshold. We have averaged accuracy for each joint over all
frames, and tested at a wide range of thresholds to indicate precisely how close predictions are to the ground truth. Note that the curve for
our algorithm in the shoulder plot is obscured by that for Chen and Yuille’s algorithm.

adjacent limb types for each shoulder. Many of these com-
binations may not be well-represented in the training set,
which would hurt performance at test time.

It may be possible to address this by adopting a joint-
based type system [24] in place of a limb-based one. This
would give greater control over the effective number of joint
types, which could allow for the size of the joint–type dis-
tribution to be decreased significantly. This could also yield
an increase in performance, since the CNN evaluation time
for the final layer in the network would decrease, as would
the time taken to copy and marginalise over the hundreds of
thousands joint distribution values produced by applying the
fully convolutional network to large images.

Another way of addressing this problem would be to train
the network with more data, or perform more aggressive aug-
mentations on an existing data set. This would be perfectly
computationally feasible given that training time is linear in
the number of training samples used. However, introducing
more data would be a less elegant fix than modifying the
existing system to be more efficient.

Figure 2 illustrates a number of common failure modes.
Whilst our algorithm is robust to minor occlusions—where a
hand lies slightly outside a frame, for instance—of the kind
shown in frames (a) and (d)–(f), self-occlusion of subjects
and partial occlusion of several joints have proven more
challenging, as in frames (b) and (f). Frames (a) and (c) also

show situations in which limb-like objects have confused the
detector. Finally, rapid limb motion was responsible for a
large number of failures, including examples (d)–(f).

7. Conclusion
We have presented a two-stage pose estimation algorithm:

firstly, a candidate pose set is generated for each frame using
a graphical model incorporating CNN-derived features. Sec-
ondly, a temporally consistent sequence of poses is produced
by recombining the poses in each frame’s candidate set. We
find that a CNN-based pose estimator for individual frames
can yield superior accuracy to a temporally-aware pose esti-
mator without CNN-based features; we ascribe this result to
the informativeness of CNN-produced image features. By
making use of temporal smoothing as well as CNN-based
features, our complete pipeline increases accuracy even fur-
ther for fast-moving joints like wrists and elbows, which are
typically the hardest joints to localise.

Acknowledgements We would like to thank the authors
of [2] and [3] for making their code publicly available.

References
[1] M. Andriluka, S. Roth, and B. Schiele. Monocular 3D pose

estimation and tracking by detection. In CVPR, 2010. 2

[2] X. Chen and A. Yuille. Articulated pose estimation by a
graphical model with image dependent pairwise relations. In
NIPS, 2014. 1, 2, 3, 5, 6

[3] A. Cherian, J. Mairal, K. Alahari, and C. Schmid. Mixing
body-part sequences for human pose estimation. In CVPR,
2014. 1, 2, 4, 5, 6

[4] V. Delaitre, D. F. Fouhey, I. Laptev, J. Sivic, A. Gupta, and
A. A. Efros. Scene semantics from long-term observation of
people. In ECCV. 2012. 1

[5] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures
for object recognition. IJCV, 61(1):55–79, 2005. 2

[6] P. F. Felzenszwalb and D. P. Huttenlocher. Distance trans-
forms of sampled functions. Theory of Computing, 8(1):415–
428, 2012. 3

[7] V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive
search space reduction for human pose estimation. In CVPR,
2008. 1, 2

[8] M. A. Fischler and R. A. Elschlager. The representation
and matching of pictorial structures. IEEE Transactions on
Computers, (1):67–92, 1973. 2

[9] A. Jain, J. Tompson, M. Andriluka, G. W. Taylor, and C. Bre-
gler. Learning human pose estimation features with convolu-
tional networks. arXiv:1312.7302, 2013. 2

[10] A. Jain, J. Tompson, Y. LeCun, and C. Bregler. MoDeep: A
deep learning framework using motion features for human
pose estimation. In ACCV. 2014. 2

[11] Q. Ji. 3D face pose estimation and tracking from a monocular
camera. Image and Vision Computing, 20(7):499–511, 2002.
2

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012. 2, 3

[13] Y. LeCun and Y. Bengio. Convolutional networks for images,
speech, and time series. The handbook of brain theory and
neural networks, 3361(10), 1995. 2

[14] S. Liu, J. Feng, Z. Song, T. Zhang, H. Lu, C. Xu, and S. Yan.
“Hi, magic closet, tell me what to wear!”. In ACMMM, 2012.
1

[15] S. Liu, Z. Song, G. Liu, C. Xu, H. Lu, and S. Yan. Street-to-
shop: Cross-scenario clothing retrieval via parts alignment
and auxiliary set. In CVPR, 2012. 1

[16] T. Pfister, J. Charles, and A. Zisserman. Flowing convnets for
human pose estimation in videos. In ICCV, 2015. 2, 5

[17] B. Sapp and B. Taskar. MODEC: Multimodal decomposable
models for human pose estimation. In CVPR, 2013. 1, 5

[18] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun. Overfeat: Integrated recognition, localization and
detection using convolutional networks. arXiv:1312.6229,
2013. 2, 3

[19] L. Sigal, S. Bhatia, S. Roth, M. J. Black, and M. Isard. Track-
ing loose-limbed people. In CVPR, 2004. 2

[20] M. Sun, P. Kohli, and J. Shotton. Conditional regression
forests for human pose estimation. In CVPR, 2012. 2

[21] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint
training of a convolutional network and a graphical model for
human pose estimation. In NIPS, 2014. 2

[22] A. Toshev and C. Szegedy. DeepPose: Human pose estima-
tion via deep neural networks. In CVPR, 2014. 2

[23] K. Yamaguchi, M. H. Kiapour, L. E. Ortiz, and T. L. Berg.
Parsing clothing in fashion photographs. In CVPR, 2012. 1

[24] Y. Yang and D. Ramanan. Articulated pose estimation with
flexible mixtures-of-parts. In CVPR, 2011. 1, 2, 4, 5, 6

[25] A. Yao, J. Gall, G. Fanelli, and L. J. Van Gool. Does human
action recognition benefit from pose estimation? In BMVC,
2011. 1

